Flatten nested dictionaries, compressing keys

Suppose you have a dictionary like:

{'a': 1,
 'c': {'a': 2,
       'b': {'x': 5,
             'y' : 10}},
 'd': [1, 2, 3]}

How would you go about flattening that into something like:

{'a': 1,
 'c_a': 2,
 'c_b_x': 5,
 'c_b_y': 10,
 'd': [1, 2, 3]}


Basically the same way you would flatten a nested list, you just have to do the extra work for iterating the dict by key/value, creating new keys for your new dictionary and creating the dictionary at final step.

import collections

def flatten(d, parent_key='', sep='_'):
    items = []
    for k, v in d.items():
        new_key = parent_key + sep + k if parent_key else k
        if isinstance(v, collections.MutableMapping):
            items.extend(flatten(v, new_key, sep=sep).items())
            items.append((new_key, v))
    return dict(items)

>>> flatten({'a': 1, 'c': {'a': 2, 'b': {'x': 5, 'y' : 10}}, 'd': [1, 2, 3]})
{'a': 1, 'c_a': 2, 'c_b_x': 5, 'd': [1, 2, 3], 'c_b_y': 10}

There are two big considerations that the original poster needs to consider:

  1. Are there keyspace clobbering issues? For example, {'a_b':{'c':1}, 'a':{'b_c':2}} would result in {'a_b_c':???}. The below solution evades the problem by returning an iterable of pairs.
  2. If performance is an issue, does the key-reducer function (which I hereby refer to as 'join') require access to the entire key-path, or can it just do O(1) work at every node in the tree? If you want to be able to say joinedKey = '_'.join(*keys), that will cost you O(N^2) running time. However if you're willing to say nextKey = previousKey+'_'+thisKey, that gets you O(N) time. The solution below lets you do both (since you could merely concatenate all the keys, then postprocess them).

(Performance is not likely an issue, but I'll elaborate on the second point in case anyone else cares: In implementing this, there are numerous dangerous choices. If you do this recursively and yield and re-yield, or anything equivalent which touches nodes more than once (which is quite easy to accidentally do), you are doing potentially O(N^2) work rather than O(N). This is because maybe you are calculating a key a then a_1 then a_1_i..., and then calculating a then a_1 then a_1_ii..., but really you shouldn't have to calculate a_1 again. Even if you aren't recalculating it, re-yielding it (a 'level-by-level' approach) is just as bad. A good example is to think about the performance on {1:{1:{1:{1:...(N times)...{1:SOME_LARGE_DICTIONARY_OF_SIZE_N}...}}}})

Below is a function I wrote flattenDict(d, join=..., lift=...) which can be adapted to many purposes and can do what you want. Sadly it is fairly hard to make a lazy version of this function without incurring the above performance penalties (many python builtins like chain.from_iterable aren't actually efficient, which I only realized after extensive testing of three different versions of this code before settling on this one).

from collections import Mapping
from itertools import chain
from operator import add

_FLAG_FIRST = object()

def flattenDict(d, join=add, lift=lambda x:x):
    results = []
    def visit(subdict, results, partialKey):
        for k,v in subdict.items():
            newKey = lift(k) if partialKey==_FLAG_FIRST else join(partialKey,lift(k))
            if isinstance(v,Mapping):
                visit(v, results, newKey)
    visit(d, results, _FLAG_FIRST)
    return results

To better understand what's going on, below is a diagram for those unfamiliar with reduce(left), otherwise known as "fold left". Sometimes it is drawn with an initial value in place of k0 (not part of the list, passed into the function). Here, J is our join function. We preprocess each kn with lift(k).

                           /    \
                         ...    kN
                       /  \
                      /    \
           J(J(k0,k1),k2)   k3
                    /   \
                   /     \
             J(k0,k1)    k2
                 /  \
                /    \
               k0     k1

This is in fact the same as functools.reduce, but where our function does this to all key-paths of the tree.

>>> reduce(lambda a,b:(a,b), range(5))
((((0, 1), 2), 3), 4)

Demonstration (which I'd otherwise put in docstring):

>>> testData = {
from pprint import pprint as pp

>>> pp(dict( flattenDict(testData, lift=lambda x:(x,)) ))
{('a',): 1,
 ('b',): 2,
 ('c', 'aa'): 11,
 ('c', 'bb'): 22,
 ('c', 'cc', 'aaa'): 111}

>>> pp(dict( flattenDict(testData, join=lambda a,b:a+'_'+b) ))
{'a': 1, 'b': 2, 'c_aa': 11, 'c_bb': 22, 'c_cc_aaa': 111}    

>>> pp(dict( (v,k) for k,v in flattenDict(testData, lift=hash, join=lambda a,b:hash((a,b))) ))
{1: 12416037344,
 2: 12544037731,
 11: 5470935132935744593,
 22: 4885734186131977315,
 111: 3461911260025554326}


from functools import reduce
def makeEvilDict(n):
    return reduce(lambda acc,x:{x:acc}, [{i:0 for i in range(n)}]+range(n))

import timeit
def time(runnable):
    t0 = timeit.default_timer()
    _ = runnable()
    t1 = timeit.default_timer()
    print('took {:.2f} seconds'.format(t1-t0))

>>> pp(makeEvilDict(8))
{7: {6: {5: {4: {3: {2: {1: {0: {0: 0,
                                 1: 0,
                                 2: 0,
                                 3: 0,
                                 4: 0,
                                 5: 0,
                                 6: 0,
                                 7: 0}}}}}}}}}

import sys

forget = lambda a,b:''

>>> time(lambda: dict(flattenDict(makeEvilDict(10000), join=forget)) )
took 0.10 seconds
>>> time(lambda: dict(flattenDict(makeEvilDict(100000), join=forget)) )
[1]    12569 segmentation fault  python

... sigh, don't think that one is my fault...

[unimportant historical note due to moderation issues]

Regarding the alleged duplicate of Flatten a dictionary of dictionaries (2 levels deep) of lists in Python:

That question's solution can be implemented in terms of this one by doing sorted( sum(flatten(...),[]) ). The reverse is not possible: while it is true that the values of flatten(...) can be recovered from the alleged duplicate by mapping a higher-order accumulator, one cannot recover the keys. (edit: Also it turns out that the alleged duplicate owner's question is completely different, in that it only deals with dictionaries exactly 2-level deep, though one of the answers on that page gives a general solution.)

Or if you are already using pandas, You can do it with json_normalize() like so:

import pandas as pd

d = {'a': 1,
     'c': {'a': 2, 'b': {'x': 5, 'y' : 10}},
     'd': [1, 2, 3]}

df = pd.io.json.json_normalize(d, sep='_')



{'a': 1, 'c_a': 2, 'c_b_x': 5, 'c_b_y': 10, 'd': [1, 2, 3]}

Here is a kind of a "functional", "one-liner" implementation. It is recursive, and based on a conditional expression and a dict comprehension.

def flatten_dict(dd, separator='_', prefix=''):
    return { prefix + separator + k if prefix else k : v
             for kk, vv in dd.items()
             for k, v in flatten_dict(vv, separator, kk).items()
             } if isinstance(dd, dict) else { prefix : dd }


In [2]: flatten_dict({'abc':123, 'hgf':{'gh':432, 'yu':433}, 'gfd':902, 'xzxzxz':{"432":{'0b0b0b':231}, "43234":1321}}, '.')
{'abc': 123,
 'gfd': 902,
 'hgf.gh': 432,
 'hgf.yu': 433,
 'xzxzxz.432.0b0b0b': 231,
 'xzxzxz.43234': 1321}


test = {'a': 1, 'c': {'a': 2, 'b': {'x': 5, 'y' : 10}}, 'd': [1, 2, 3]}

def parse_dict(init, lkey=''):
    ret = {}
    for rkey,val in init.items():
        key = lkey+rkey
        if isinstance(val, dict):
            ret.update(parse_dict(val, key+'_'))
            ret[key] = val
    return ret



$ python test.py
{'a': 1, 'c_a': 2, 'c_b_x': 5, 'd': [1, 2, 3], 'c_b_y': 10}

I am using python3.2, update for your version of python.

If you're using pandas there is a function hidden in pandas.io.json.normalize called nested_to_record which does this exactly.

from pandas.io.json.normalize import nested_to_record    

flat = nested_to_record(my_dict, sep='_')

This is not restricted to dictionaries, but every mapping type that implements .items(). Further ist faster as it avoides an if condition. Nevertheless credits go to Imran:

def flatten(d, parent_key=''):
    items = []
    for k, v in d.items():
            items.extend(flatten(v, '%s%s_' % (parent_key, k)).items())
        except AttributeError:
            items.append(('%s%s' % (parent_key, k), v))
    return dict(items)

How about a functional and performant solution in Python3.5?

from functools import reduce

def _reducer(items, key, val, pref):
    if isinstance(val, dict):
        return {**items, **flatten(val, pref + key)}
        return {**items, pref + key: val}

def flatten(d, pref=''):
        lambda new_d, kv: _reducer(new_d, *kv, pref), 

This is even more performant:

def flatten(d, pref=''):
        lambda new_d, kv: \
            isinstance(kv[1], dict) and \
            {**new_d, **flatten(kv[1], pref + kv[0])} or \
            {**new_d, pref + kv[0]: kv[1]}, 

In use:

my_obj = {'a': 1, 'c': {'a': 2, 'b': {'x': 5, 'y': 10}}, 'd': [1, 2, 3]}

# {'d': [1, 2, 3], 'cby': 10, 'cbx': 5, 'ca': 2, 'a': 1}

My Python 3.3 Solution using generators:

def flattenit(pyobj, keystring=''):
   if type(pyobj) is dict:
     if (type(pyobj) is dict):
         keystring = keystring + "_" if keystring else keystring
         for k in pyobj:
             yield from flattenit(pyobj[k], keystring + k)
     elif (type(pyobj) is list):
         for lelm in pyobj:
             yield from flatten(lelm, keystring)
      yield keystring, pyobj

my_obj = {'a': 1, 'c': {'a': 2, 'b': {'x': 5, 'y': 10}}, 'd': [1, 2, 3]}

#your flattened dictionary object
flattened={k:v for k,v in flattenit(my_obj)}

# result: {'c_b_y': 10, 'd': [1, 2, 3], 'c_a': 2, 'a': 1, 'c_b_x': 5}

Simple function to flatten nested dictionaries. For Python 3, replace .iteritems() with .items()

def flatten_dict(init_dict):
    res_dict = {}
    if type(init_dict) is not dict:
        return res_dict

    for k, v in init_dict.iteritems():
        if type(v) == dict:
            res_dict[k] = v

    return res_dict

The idea/requirement was: Get flat dictionaries with no keeping parent keys.

Example of usage:

dd = {'a': 3, 
      'b': {'c': 4, 'd': 5}, 
      'e': {'f': 
                 {'g': 1, 'h': 2}
      'i': 9,


>> {'a': 3, 'c': 4, 'd': 5, 'g': 1, 'h': 2, 'i': 9}

Keeping parent keys is simple as well.

This is similar to both imran's and ralu's answer. It does not use a generator, but instead employs recursion with a closure:

def flatten_dict(d, separator='_'):
  final = {}
  def _flatten_dict(obj, parent_keys=[]):
    for k, v in obj.iteritems():
      if isinstance(v, dict):
        _flatten_dict(v, parent_keys + [k])
        key = separator.join(parent_keys + [k])
        final[key] = v
  return final

>>> print flatten_dict({'a': 1, 'c': {'a': 2, 'b': {'x': 5, 'y' : 10}}, 'd': [1, 2, 3]})
{'a': 1, 'c_a': 2, 'c_b_x': 5, 'd': [1, 2, 3], 'c_b_y': 10}

Davoud's solution is very nice but doesn't give satisfactory results when the nested dict also contains lists of dicts, but his code be adapted for that case:

def flatten_dict(d):
    items = []
    for k, v in d.items():
            if (type(v)==type([])): 
                for l in v: items.extend(flatten_dict(l).items())
        except AttributeError:
            items.append((k, v))
    return dict(items)

The answers above work really well. Just thought I'd add the unflatten function that I wrote:

def unflatten(d):
    ud = {}
    for k, v in d.items():
        context = ud
        for sub_key in k.split('_')[:-1]:
            if sub_key not in context:
                context[sub_key] = {}
            context = context[sub_key]
        context[k.split('_')[-1]] = v
    return ud

Note: This doesn't account for '_' already present in keys, much like the flatten counterparts.

Here's an algorithm for elegant, in-place replacement. Tested with Python 2.7 and Python 3.5. Using the dot character as a separator.

def flatten_json(json):
    if type(json) == dict:
        for k, v in list(json.items()):
            if type(v) == dict:
                for k2, v2 in v.items():
                    json[k+"."+k2] = v2


d = {'a': {'b': 'c'}}                   


{'a.b': 'c'}
{'a': {'b': 'c'}}

I published this code here along with the matching unflatten_json function.

If you want to flat nested dictionary and want all unique keys list then here is the solution:

def flat_dict_return_unique_key(data, unique_keys=set()):
    if isinstance(data, dict):
        [unique_keys.add(i) for i in data.keys()]
        for each_v in data.values():
            if isinstance(each_v, dict):
                flat_dict_return_unique_key(each_v, unique_keys)
    return list(set(unique_keys))

Using generators:

def flat_dic_helper(prepand,d):
    if len(prepand) > 0:
        prepand = prepand + "_"
    for k in d:
        if type(i).__name__=='dict':
            r = flat_dic_helper(prepand+k,i)
            for j in r:
                yield j
            yield (prepand+k,i)

def flat_dic(d): return dict(flat_dic_helper("",d))

d={'a': 1, 'c': {'a': 2, 'b': {'x': 5, 'y' : 10}}, 'd': [1, 2, 3]}

>> {'a': 1, 'c_a': 2, 'c_b_x': 5, 'd': [1, 2, 3], 'c_b_y': 10}

Using dict.popitem() in straightforward nested-list-like recursion:

def flatten(d):
    if d == {}:
        return d
        k,v = d.popitem()
        if (dict != type(v)):
            return {k:v, **flatten(d)}
            flat_kv = flatten(v)
            for k1 in list(flat_kv.keys()):
                flat_kv[k + '_' + k1] = flat_kv[k1]
                del flat_kv[k1]
            return {**flat_kv, **flatten(d)}

def flatten(unflattened_dict, separator='_'):
    flattened_dict = {}

    for k, v in unflattened_dict.items():
        if isinstance(v, dict):
            sub_flattened_dict = flatten(v, separator)
            for k2, v2 in sub_flattened_dict.items():
                flattened_dict[k + separator + k2] = v2
            flattened_dict[k] = v

    return flattened_dict

I always prefer access dict objects via .items(), so for flattening dicts I use the following recursive generator flat_items(d). If you like to have dict again, simply wrap it like this: flat = dict(flat_items(d))

def flat_items(d, key_separator='.'):
    Flattens the dictionary containing other dictionaries like here: https://stackoverflow.com/questions/6027558/flatten-nested-python-dictionaries-compressing-keys

    >>> example = {'a': 1, 'c': {'a': 2, 'b': {'x': 5, 'y' : 10}}, 'd': [1, 2, 3]}
    >>> flat = dict(flat_items(example, key_separator='_'))
    >>> assert flat['c_b_y'] == 10
    for k, v in d.items():
        if type(v) is dict:
            for k1, v1 in flat_items(v, key_separator=key_separator):
                yield key_separator.join((k, k1)), v1
            yield k, v

Need Your Help

Get list of all installed application in ios 8

ios ios8 iphone-privateapi

How to get list of all installed Applications on iPhone device programmatically in iOS 8.

How to format number values for ggplot2 legend?

r ggplot2

I am working on finishing up a graph generated using ggplot2 like so...