Mapreduce java program to search QuadTree index and also run GeometryEngine.contains to confirm point in polygon using wkt file

This post is a map reduce implementation suggested for my previous question: "How to optimize scan of 1 huge file / table in Hive to confirm/check if lat long point is contained in a wkt geometry shape"

I am not well-versed in writing java programs for map-reduce and I mainly use Hive or Pig or spark to develop in Hadoop eco-system. To give a background of task at hand: I am trying to associate every latitude/longitude ping to corresponding ZIP postal code. I have a WKT multi-polygon shape file (500 MB) with all the zip information. I have loaded this in Hive and can do a join using ST_Contains(polygon, point). However, it takes very long to complete. To over come this bottle neck I am trying to leverage the example in ESRI ("") by building a quad tree index for searching a point derived from lat-long in polygon.

I have managed to write the code and it clogs up the Java heap memory of the cluster. Any suggestions on improving the code or looking at a different approach will be greatly appreciated: Error message: Error: Java heap space Container killed by the ApplicationMaster. Container killed on request. Exit code is 143 Container exited with a non-zero exit code 143

My code:

public class MapperClass extends Mapper<LongWritable, Text, Text, IntWritable> {

    // column indices for values in the text file
    int longitudeIndex;
    int latitudeIndex;
    int wktZip; 
    int wktGeom;
    int wktLineCount;
    int wktStateID;

    // in boundaries.wkt, the label for the polygon is "wkt"
    //creating ArrayList to hold details of the file
    ArrayList<ZipPolyClass> nodes = new ArrayList<ZipPolyClass>();

    String labelAttribute;
    EsriFeatureClass featureClass;
    SpatialReference spatialReference;
    QuadTree quadTree;
    QuadTreeIterator quadTreeIter;
    BufferedReader csvWkt;

    // class to store all the values from wkt file and calculate geometryFromWKT 
    public class ZipPolyClass {

        public String zipCode;
        public String wktPoly;
        public String stateID;
        public int indexJkey;
        public Geometry wktGeomObj; 

        public ZipPolyClass(int ijk, String z, String w, String s ){
            zipCode = z;
            wktPoly = w;
            stateID = s;
            indexJkey = ijk;
            wktGeomObj = GeometryEngine.geometryFromWkt(wktPoly, 0, Geometry.Type.Unknown);


    //building quadTree Index from WKT multiPolygon and creating an iterator
    private void buildQuadTree(){
        quadTree = new QuadTree(new Envelope2D(-180, -90, 180, 90), 8);

        Envelope envelope = new Envelope();

        int j=0;

            quadTree.insert(j, new Envelope2D(envelope.getXMin(), envelope.getYMin(), envelope.getXMax(), envelope.getYMax()));

        quadTreeIter = quadTree.getIterator();

     * Query the quadtree for the feature containing the given point
     * @param pt point as longitude, latitude
     * @return index to feature in featureClass or -1 if not found
    private int queryQuadTree(Point pt)
        // reset iterator to the quadrant envelope that contains the point passed
        quadTreeIter.resetIterator(pt, 0);

        int elmHandle =;

        while (elmHandle >= 0){
            int featureIndex = quadTree.getElement(elmHandle);

            // we know the point and this feature are in the same quadrant, but we need to make sure the feature
            // actually contains the point
            if (GeometryEngine.contains(nodes.get(featureIndex).wktGeomObj, pt, spatialReference)){
                return featureIndex;

            elmHandle =;

        // feature not found
        return -1;

     * Sets up mapper with filter geometry provided as argument[0] to the jar
    public void setup(Context context)
        Configuration config = context.getConfiguration();

        spatialReference = SpatialReference.create(4326);

        // first pull values from the configuration     
        String featuresPath = config.get("sample.features.input");
        //get column reference from driver class 
        wktZip = config.getInt("", 0);
        wktGeom = config.getInt("sample.features.col.geometry", 18);
        wktStateID = config.getInt("sample.features.col.stateID", 3);
        latitudeIndex = config.getInt("", 5);
        longitudeIndex = config.getInt("samples.csvdata.columns.long", 6);

        FSDataInputStream iStream = null;

        try {
            // load the text WKT file provided as argument 0
            FileSystem hdfs = FileSystem.get(config);
            iStream = Path(featuresPath));
            BufferedReader br = new BufferedReader(new InputStreamReader(iStream));
            String wktLine ;
            int i=0;

            while((wktLine = br.readLine()) != null){
                String [] val = wktLine.split("\\|");
                String qtZip = val[wktZip];
                String poly = val[wktGeom];
                String stID = val[wktStateID];
                ZipPolyClass zpc = new ZipPolyClass(i, qtZip, poly, stID);
                i++; // increment in the loop before end

        catch (Exception e)
            if (iStream != null)
                try {
                } catch (IOException e) { }

        // build a quadtree of our features for fast queries
        if (!nodes.isEmpty()) {

    public void map(LongWritable key, Text val, Context context)
            throws IOException, InterruptedException {

         * The TextInputFormat we set in the configuration, by default, splits a text file line by line.
         * The key is the byte offset to the first character in the line.  The value is the text of the line.

        String line = val.toString();
        String [] values = line.split(",");

        // get lat long from file and convert to float
        float latitude = Float.parseFloat(values[latitudeIndex]);
        float longitude = Float.parseFloat(values[longitudeIndex]);

        // Create our Point directly from longitude and latitude
        Point point = new Point(longitude, latitude);

        int featureIndex = queryQuadTree(point);

        // Each map only processes one record at a time, so we start out with our count 
                // as 1. Since we have a distinct record file we will not run reducer
                IntWritable one = new IntWritable(1);

        if (featureIndex >= 0){

            String zipTxt =nodes.get(featureIndex).zipCode;
            String stateIDTxt = nodes.get(featureIndex).stateID;
            String latTxt = values[latitudeIndex];
            String longTxt = values[longitudeIndex];
            String pointTxt = point.toString();
            String name;
            name = zipTxt+"\t"+stateIDTxt+"\t"+latTxt+"\t"+longTxt+ "\t" +pointTxt;

            context.write(new Text(name), one);
        } else {
            context.write(new Text("*Outside Feature Set"), one);


I was able to resolve the out of memory issue by modifying the arrayList < classObject > to just hold arrayList < geometry > type.

Creating a class object (around 50k) to hold each row of a text file, consumed all the java heap memory. After this change code ran fine even in a 1-node virtual sandbox. I was able to crunch around 40 million rows in around 6 minutes.

Need Your Help

Portable Class Library project - reference assemblies not installed?

xamarin.ios xamarin xamarin-studio

I'm using Xamarin Studio Version 4.2.3 on a Mac (Starter Edition; Mono 3.2.6; Xamarin.Android Version 4.12.1; Xamarin.iOS Version 7.2.02).

CUDA-GDB prints memory content using int format even though it should be float

debugging types gdb cuda-gdb

In a CUDA C project, I have a pointer to float inside a structure called "p".