pandas unique values multiple columns

df = pd.DataFrame({'Col1': ['Bob', 'Joe', 'Bill', 'Mary', 'Joe'],
                   'Col2': ['Joe', 'Steve', 'Bob', 'Bob', 'Steve'],
                   'Col3': np.random.random(5)})

What is the best way to return the unique values of 'Col1' and 'Col2'?

The desired output is

'Bob', 'Joe', 'Bill', 'Mary', 'Steve'


pd.unique returns the unique values from an input array, or DataFrame column or index.

The input to this function needs to be one-dimensional, so multiple columns will need to be combined. The simplest way is to select the columns you want and then view the values in a flattened NumPy array. The whole operation looks like this:

>>> pd.unique(df[['Col1', 'Col2']].values.ravel('K'))
array(['Bob', 'Joe', 'Bill', 'Mary', 'Steve'], dtype=object)

Note that ravel() is an array method than returns a view (if possible) of a multidimensional array. The argument 'K' tells the method to flatten the array in the order the elements are stored in memory (pandas typically stores underlying arrays in Fortran-contiguous order; columns before rows). This can be significantly faster than using the method's default 'C' order.

An alternative way is to select the columns and pass them to np.unique:

>>> np.unique(df[['Col1', 'Col2']].values)
array(['Bill', 'Bob', 'Joe', 'Mary', 'Steve'], dtype=object)

There is no need to use ravel() here as the method handles multidimensional arrays. Even so, this is likely to be slower than pd.unique as it uses a sort-based algorithm rather than a hashtable to identify unique values.

The difference in speed is significant for larger DataFrames (especially if there are only a handful of unique values):

>>> df1 = pd.concat([df]*100000, ignore_index=True) # DataFrame with 500000 rows
>>> %timeit np.unique(df1[['Col1', 'Col2']].values)
1 loop, best of 3: 1.12 s per loop

>>> %timeit pd.unique(df1[['Col1', 'Col2']].values.ravel('K'))
10 loops, best of 3: 38.9 ms per loop

>>> %timeit pd.unique(df1[['Col1', 'Col2']].values.ravel()) # ravel using C order
10 loops, best of 3: 49.9 ms per loop

I have setup a DataFrame with a few simple strings in it's columns:

>>> df
   a  b
0  a  g
1  b  h
2  d  a
3  e  e

You can concatenate the columns you are interested in and call unique function:

>>> pandas.concat([df['a'], df['b']]).unique()
array(['a', 'b', 'd', 'e', 'g', 'h'], dtype=object)

In [5]: set(df.Col1).union(set(df.Col2))
Out[5]: {'Bill', 'Bob', 'Joe', 'Mary', 'Steve'}


set(df.Col1) | set(df.Col2)

Non-pandas solution: using set().

import pandas as pd
import numpy as np

df = pd.DataFrame({'Col1' : ['Bob', 'Joe', 'Bill', 'Mary', 'Joe'],
              'Col2' : ['Joe', 'Steve', 'Bob', 'Bob', 'Steve'],
               'Col3' : np.random.random(5)})

print df

print set(df.Col1.append(df.Col2).values)


   Col1   Col2      Col3
0   Bob    Joe  0.201079
1   Joe  Steve  0.703279
2  Bill    Bob  0.722724
3  Mary    Bob  0.093912
4   Joe  Steve  0.766027
set(['Steve', 'Bob', 'Bill', 'Joe', 'Mary'])

An updated solution using numpy v1.13+ requires specifying the axis in np.unique if using multiple columns, otherwise the array is implicitly flattened.

import numpy as np

np.unique(df[['col1', 'col2']], axis=0)

This change was introduced Nov 2016:

for those of us that love all things pandas, apply, and of course lambda functions:

df['Col3'] = df[['Col1', 'Col2']].apply(lambda x: ''.join(x), axis=1)

list(set(df[['Col1', 'Col2']].as_matrix().reshape((1,-1)).tolist()[0]))

The output will be ['Mary', 'Joe', 'Steve', 'Bob', 'Bill']

here's another way

import numpy as np


Need Your Help

No print output from child multiprocessing.Process unless the program crashes

python multithreading io multiprocessing

I am having trouble with the Python multiprocessing module. I am using the Process class to spawn a new process in order to utilize my second core. This second process loads a bunch of data into RA...

delete a row in table view in swift

ios uitableview swift

I am trying to delete a row in table view. I have implemented the required methods but when i am swiping the row horizontally no delete button is coming. I have searched and I have found the same